Banner
Video tutorial
1. What is PancanQTL?

PancanQTL is a database to provide a comprehensive resource of expression quantitative loci (eQTLs) across 33 human cancer types.

In PancanQTL, users can:

  • Browse or search cis-eQTLs and trans-eQTLs across different cancer types;
  • Browse or search eQTLs associated with patient survival across different cancer types;
  • Browse or search eQTLs in GWAS linkage disequilibrium (LD) regions;
  • 2. Database construction pipeline
    cis
    3. Data summary
    Cancer type
    Full name
    No. of samples
    No. of genes
    No. of genotypes
    Cis-pairs
    Cis-egenes
    Cis-eQTLs
    Trans-pairs
    Trans-egenes
    Trans-eQTLs
    ACC Adrenocortical carcinoma 77 17562 3678145 4610 222 4558 984 60 957
    BLCA Bladder Urothelial Carcinoma 408 18171 4242910 142562 5573 120374 9199 1575 3114
    BRCA Breast invasive carcinoma 1092 17991 2765921 438476 11859 317935 73124 6013 20466
    CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 300 17975 4367017 95702 4165 84484 2209 674 971
    CHOL Cholangiocarcinoma 36 17767 4106282 11 2 11 5011 127 4436
    COAD Colon adenocarcinoma 286 17500 4576984 164356 5048 145461 3085 373 2359
    DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 48 17245 4945365 391 15 391 5 3 5
    ESCA Esophageal carcinoma 184 18372 4563674 39358 1603 36589 425 56 410
    GBM Glioblastoma Multiforme 150 17650 4660522 59788 1901 55855 481 55 465
    HNSC Head and Neck squamous cell carcinoma 518 17985 4302347 267797 6502 228069 9285 1064 7389
    KICH Kidney Chromophobe 66 17212 3902792 7264 320 7038 5826 157 4669
    KIRC Kidney renal clear cell carcinoma 527 17812 4632879 521072 8739 410720 13978 943 12200
    KIRP Kidney renal papillary cell carcinoma 290 17715 4981141 186310 4920 164159 2712 302 2516
    LAML Acute Myeloid Leukemia 123 17099 5245402 70375 1758 64696 580 38 397
    LGG Lower Grade Glioma 515 17563 4688205 578617 9177 437580 21236 1804 13084
    LIHC Liver hepatocellular carcinoma 369 17816 4218042 151613 5723 128956 16675 2230 3963
    LUAD Lung adenocarcinoma 514 18190 4435432 259475 6834 220709 6157 745 4513
    LUSC Lung squamous cell carcinoma 500 18277 3787605 204145 6367 173856 11934 1050 10487
    MESO Mesothelioma 87 17742 4904165 16527 475 16140 474 43 471
    OV Ovarian serous cystadenocarcinoma 301 18137 3018011 92743 7100 74419 6196 2028 2245
    PAAD Pancreatic adenocarcinoma 178 18021 5099858 113810 2468 104058 1221 110 978
    PCPG Pheochromocytoma and Paraganglioma 178 17552 4836419 93679 3203 83517 1146 241 985
    PRAD Prostate adenocarcinoma 494 17646 4887130 691299 10152 514457 15730 1105 11589
    READ Rectum adenocarcinoma 94 17427 4653098 22788 781 22114 72 14 72
    SARC Sarcoma 258 18183 4156361 70201 4194 61193 5704 1055 4115
    SKCM Skin Cutaneous Melanoma 103 17645 4968336 15046 720 14487 348 45 299
    STAD Stomach adenocarcinoma 415 18478 4362659 161271 4913 142709 2470 391 1994
    TGCT Testicular Germ Cell Tumors 150 18790 4927197 71832 1959 67882 653 39 599
    THCA Thyroid carcinoma 503 17277 4936390 927678 10766 659323 13592 745 8908
    THYM Thymoma 120 17785 5036992 85627 2090 78507 436 43 379
    UCEC Uterine Corpus Endometrial Carcinoma 176 18195 5111002 25426 1188 24721 251 35 248
    UCS Uterine Carcinosarcoma 56 18314 4036518 488 25 488 6 2 6
    UVM Uveal Melanoma 80 16758 4812283 26233 890 25260 5 4 5
    4. The eQTL boxplot and survival Kaplan-Meier plot.
    eQTL boxplot
    Kaplan-Meier plot

    Boxplots represent the gene expression in individuals carrying homozygote AA, heterozygous Aa, and homozygote aa, respectively.

    Lines represent the survival curve for individuals carrying homozygote AA, heterozygous rs1824937 Aa, and homozygote aa, respectively.

    5. The identification of GWAS-related eQTLs

    GWAS tagSNPs were downloaded from GWAS catalog website (http://www.ebi.ac.uk/gwas/) and the GWAS linkage disequilibrium regions were extracted from SNAP database (https://archive.broadinstitute.org/mpg/snap/ldsearchpw.php). eQTLs that overlapp with tagSNPs and/or linkage disequilibrium regions were extracted as GWAS-related eQTLs.